
Cross Layer Design for IEEE 802.11 WLANs:
Joint Rate Control and Packet Scheduling

Qiuyan Xia, Mounir Hamdi
Department of Computer Science

Hong Kong University of Science and Technology
Kowloon, Hong Kong, China
{xiaqy, hamdi}@cs.ust.hk

Abstract

IEEE 802.11 Wireless Local Area Networks (WLANs)
are widely deployed nowadays. With traditional layered ar-
chitecture, current WLAN adopts functional layer partition-
ing and aims at optimization in individual layers. However,
in a highly dynamic and media sharing wireless environ-
ment, the capacity enhancement at physical layers may not
necessarily benefit the overall system performance. More-
over, in a multiuser setting, throughput can be increased
substantially if partial knowledge of the channel is known.
In this paper, we address the issue of cross layer design in
the proposed “Weighted Fair Scheduling based on Adap-
tive Rate Control” (WFS-ARC) framework, where the PHY
layer knowledge is shared with the MAC/LLC layer. It can
make good matching of instantaneous channel conditions of
multiple users with resource allocation to each user.

1. Introduction

The IEEE 802.11 standard [5] has emerged as a prevail-
ing standard in the market for WLANs. The current PHY
layer extensions provide multiple data rates: for example,
802.11a [6] defines 8 different data rates ranging from 6 up
to 54 Mbps. Typically, higher data rates require higher SNR
to maintain a certain BER; on the other hand, lower data
rates can ensure a small BER, but the achieved throughput
is also small. In wireless systems, the propagation environ-
ments vary over time and space due to such factors as sig-
nal attenuation and fading, motion of objects, interference
and so on, causing variations in the received SNR. As a re-
sult, no data rate can be optimal under all scenarios. More-
over, the standard does not specify when and how to switch
among different rates. As the multirate enhancements are
PHY layer protocols, MAC layer rate control mechanism
is required to exploit this capability, by tuning the user-
available MAC layer parameter, the data rate, to current

channel condition. However, the transmitter only has lim-
ited, indirect feedback such as ACKs and retry counts under
the current 802.11 implementation. Therefore, a rate control
algorithm is required to be adaptive and simple enough.

While the rate control scheme at the MAC layer aims to
tune the data rate to the channel conditions and maximize
the throughput of an individual layer, the overall system per-
formance may not necessarily be optimized. Moreover, in
a multiuser setting, different users undergo different chan-
nel gains, which results in the phenomenon of multiuser di-
versity. However, in the common infrastructure WLANs,
the multiuser diversity is rarely exploited and sometimes
even degrades the system performance. For example, FIFO
queueing at the Access Point (AP) may give rise to the
Head-of-Line Blocking problem, as the HOL packet trans-
mitted through a low quality radio channel consumes lots
of air time and prevents other transmissions occurring over
good channels, which results in low channel utilization.
Taking account of these effects, a transmission scheduler at
the LLC layer is required to exploit the multiuser diversity,
by opportunistically selecting a feasible user with a good
channel. Also, it should balance the system throughput and
fairness requirements among “good” and “bad” users.

Applying the above ideas to our proposed cross layer de-
sign, the WFS-ARC approach dynamically adjusts the data
rate parameter at the MAC layer, based on channel state
feedback provided by the PHY layer. On top of the MAC
layer, an LLC layer scheduler is implemented to opportunis-
tically schedule the packet transmission to the most promis-
ing user and also satisfy the fairness constraint. We remark
that while exploring a much richer interaction between pa-
rameters across layers, we should not destroy the necessary
independence and integrity of individual layers, which may
lead to various undesirable consequences.

The rest of the paper is organized as follows. We briefly
introduce the IEEE 802.11 standard and related work in sec-
tion 2. In section 3, we first give an overview of our cross
layer design framework and explain how it functions. Based

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

on that, we present our adaptive rate control algorithm and
the optimization model for weighted fairness scheduling in
detail. Section 4 evaluates the simulation performance of
our approach. Finally, this paper concludes with section 5.

2. Background and related work

2.1. The IEEE 802.11 WLAN

The IEEE 802.11 [5] standard specifies the Medium
Access Control (MAC) and Physical (PHY) layers for a
WLAN system. There are currently three PHY layer exten-
sions: 802.11b, 802.11a, and 802.11g, all providing multi-
ple data rates. The common MAC layer defines rules for or-
derly access to the shared medium in support of the Logi-
cal Link Control (LLC) layer. Two medium access mecha-
nisms are defined in 802.11: the Distributed Coordination
Function (DCF) is a mandatory, contention-based proto-
col; the Point Coordination Function (PCF) is a priority-
based, contention-free protocol. The DCF implementation
is based on the Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA) mechanism. The basic ac-
cess mode works as follows: before a station starts a frame
transmission, it checks the medium status by carrier sens-
ing. If the medium is idle, the transmission may proceed; if
the medium is sensed busy, the station defers its transmis-
sion until the medium is determined to be idle for the DIFS
interval and a random backoff procedure is invoked. For
each successful reception of a frame, the receiver immedi-
ately acknowledges the frame reception by sending an ACK
frame. The DCF also defines an optional RTS/CTS mech-
anism. Throughout this paper, we present the cross layer
design for 802.11a WLAN working under the basic access
mode. Our approach can easily be extended to WLANs with
other PHY layers such as 802.11g. Also, we focus on infras-
tructure networks that use Access Points (APs) for all com-
munications between stations.

2.2. Related work

2.2.1. Rate control algorithm. The Auto Rate Fallback
(ARF) algorithm [16] in Lucent’s WaveLAN-II devices, is
one of the few used in commercial WLAN products. It
works as follows: if 2 consecutive ACKs are not received
correctly, the sender drops the transmission rate for the sec-
ond retry of the current packet as well as the subsequent
transmissions to the next lower data rate, and starts a timer;
if 10 consecutive ACKs are received successfully, the trans-
mission rate is raised to the next higher data rate and the
timer is cancelled. Obviously, this scheme is easy to deploy
with existing 802.11 devices since it requires no changes to
the standard. In the Receiver Based Auto Rate (RBAR) pro-
tocol [4], the receiver estimates the channel conditions us-

ing a sample of instantaneously received signal strength at
the end of RTS reception, and then feeds back the selected
data rate to the sender in CTS. Similar ideas can be found
in [15]. However, standard modification is required. In all
schemes, only time diversity of single channel is consid-
ered. By tuning data rate to the time-varying channel condi-
tions, these methods mitigate channel variations rather than
utilize them. The multiuser diversity is completely ignored.

2.2.2. Packet scheduling algorithm. In an infrastructure
WLAN, usually the AP maintains a single FIFO queue for
all traffic flows. Since the HOL packet may be either trans-
mitted at a low rate, or retransmitted many times before it
gets through or is finally dropped, it prevents other packets
in the FIFO queue from being transmitted, leading to very
low channel utilization. Note that the instantaneous channel
gains from the AP to different clients are independent; how-
ever, due to the HOL blocking, variations in channel quality
can not be utilized.

The Channel State Dependent Packet Scheduling (CS-
DPS) scheme proposed in [3] addresses this problem. The
main idea is that, when a wireless channel is observed at
the “bad” status, it switches to transmit on other “good”
links, so that the HOL effect can be removed. However,
this method has some limitations. First, it uses a link sta-
tus monitor to continuously track the channel quality. Such
a mechanism is not available in the current 802.11 WLANs
due to implementation costliness. Second, the binary chan-
nel model assumed is too simple to account for the realistic
time-varying wireless environment.

There are other scheduling schemes proposed; however,
some are designed specifically for HDR or CDMA systems
[10]; others do not take advantage of a rate adaptive MAC
[7]. Again, few explicit models or solutions are proposed
for jointly using the information from different layers. Note
that in the infrastructure WLANs, the overall system per-
formance (e.g., the aggregate throughput) is more desirable
than single user performance. On the other hand, as de-
scribed in [13], there also exists a fundamental tradeoff be-
tween throughput and fairness. Therefore, the fairness con-
straint should be satisfied while trying to improve the sys-
tem performance.

3. WFS-ARC framework

3.1. Cross layer design

In wireless networks, where channel quality can vary
dramatically in both time and frequency, knowledge of
the channel state can be exploited to significantly improve
performance [2]. For example, modern wireless interface
cards usually employ rate adaptation methods. Moreover,
higher error rates or lower data rates at the PHY layer af-
fects higher-layer performance. In a multiuser setting, as

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

the number of users in a system increases, the probability
that one user has a very good channel also increases. Ex-
ploiting this diversity results in a total system throughput
gain that increases with the number of users, since it pro-
vides a user with an opportunity to transmit data to one of
its neighbors with good channel quality before those with
bad channel quality. However, this must be balanced with
higher-layer issues (e.g., fairness). All of these coupling ef-
fects demonstrate the need to consider higher-layer issues
jointly with the PHY layer issues. Note that cross layer de-
sign does not mean getting rid of protocol layers, or inte-
grating all layers [8]. Instead, since there is direct coupling
between the PHY layer and upper layers, the inter-layer
coupling can be exploited for further optimization, instead
of a sub-optimal solution resulting from several local opti-
mizations in each layer. We must consider carefully which
layers should respond to channel variations, and what lay-
ers should be jointly designed or optimized [1].

Our solution serves to provide some insights regard-
ing the design of cross layer paradigms. We are trying
to demonstrate that significant performance gain can be
achieved by jointly considering several layer issues in an in-
tegrated framework. Our goal is to utilize the multirate PHY
to produce a rate adaptive MAC, and exploit the multiuser
diversity to produce a MAC assuming a multiuser PHY, so
that the MAC can take advantage of both time and loca-
tion dependent diversities to address the channel vulnera-
bility and the HOL blocking, while considering fairness is-
sues among multiple users.

We focus primarily on the downlink model, a situation
where the arriving traffic is buffered at the AP until it is
transmitted, and resources are allocated as a function of
each flow’s channel state. The AP acts as a centralized con-
troller and makes all resource allocation decisions. It main-
tains a set of queues for each back logged flows at the LLC
layer (Figure 1). We assume saturated traffic here, so pack-
ets arriving when queues are full are dropped. In our WFS-
ARC scheme, LLC/MAC/PHY layers work cooperatively
to optimize bandwidth allocation, while satisfying the fair-
ness requirement. We note that the proposed framework is
quite general and can accommodate a variety of physical
layer models and wireless network topologies.

There are three functional blocks in the proposed cross
layer framework (Figure 1). The rate controller at the MAC
layer adjusts the data rate parameter used by the PHY layer.
Its goal is to dynamically adjust the data rate according to
the channel quality variations and therefore, improve the
channel efficiency. It collects statistics of ACKs and retry
counts, for different downlink nodes. Based on the collected
information, the AP estimates the downlink channel quality
and selects the data rate which is “best” among all possi-
ble rates for each active client.

Suppose there are N users in total in the system, each

Per Next Hop Queues
at the AP

Rate
Controller

Packet
Scheduler

Weight
Adjustor

Wireless Channel

[p1, p2,..., pN]

[p1, p2,..., pN]

[G1, G2,..., GN]

[r1, r2,..., rN]

[w1,w2,..,wN]

[c1,c2,..., cN]

1

2

N-1

N

Figure 1. WFS-ARC framework

with a weight wi. The weight vector �w can be constant
or dynamically updated. We define the Contention Period
(CP), as the time duration lasting for a frame’s transmis-
sion and reception, including backoff, deferring, and ACK
duration. The scheduling decision is made at the begin-
ning of each CP. The rate controller collects the transmis-
sion statistics, such as ACKs and retry counts to measure
the channel qualities. The output of the rate controller is
a vector of data rates, �r(k) = [r1(k), r2(k), ... , rN (k)],
for active nodes at the contention period k. Based on the
rate vector, the expected goodput vector during kth CP
�G(k) = [G1(k), G2(k), ... , GN (k)] can be computed ap-
proximately using the formulas (1), (2) and (3):

G =
Data payload length

ETT
, where (1)

ETT = Backoff + DIFS + PHY ov + MAC ov +
MAC data duration + SIFS + ACK,

(2)

MAC data duration =
MAC data payload length

data rate r
(3)

The goodput vector �G(k), together with a control vec-
tor �c(k) = [c1(k), c2(k), ... , cN (k)] are fed to the
scheduling block, which is positioned on top of the
MAC layer. The scheduler selects the most promis-
ing user to transmit a packet to, based on a scheduling
policy. The scheduling decision is given by the vec-
tor �p(k) = [p1(k), p2(k), ... , pN (k)]. Define pi(k)
(1 ≤ i ≤ N) as follows (i.e., one by one schedul-
ing):

pi(k) =
{

1 useri is scheduled in kth CP,
0 otherwise.

(4)

Following the scheduling decision, a packet is transmitted
to the wireless channel, and the transmission result is col-
lected at the rate controller for rate adaptation in the next
CP. The decision vector �p(k) also serves as an input to the
weight adjustor, which adaptively updates the control vec-
tor �c(k), so that the long term expected goodput of each user
approaches the assigned weight.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

3.2. Adaptive rate control algorithm

In this section, we propose a simple but efficient ARF-
like rate control algorithm implemented in the rate con-
troller. The basic ideas included are: 1) multirate retry; 2)
AIMD adjustment of the Success Threshold (ST).

The multirate retry mechanism is used to react quickly
to the short-term channel variations and reduce fluctuations
in the long-term data rate. The idea is that, each next-hop
FIFO queuei is associated with a long-term rate ri. When
the HOL packet of queuei is going to the air, the rate con-
troller fills in the retry series, in the transmission descriptor
for that packet, with the current value of ri and correspond-
ing lower retry rates than ri. If the first attempt fails, re-
tries at lower rates automatically take place without chang-
ing ri. Therefore, small-scale variations can be quickly re-
solved to avoid premature long-term rate adjustments.

We adjust the long-term rate ri by a threshold scheme
similar to ARF. It has been shown that a fixed value of ST
is very sensitive to the changing speed of link quality [4].
Intuitively, it is better to increase ST so that we can min-
imize the undesired rate increments for slow fading chan-
nels; on the other hand, when the channel condition is fluc-
tuating rapidly, it is critical to locate an optimal rate and
stay there as long as possible. Here we propose a dynamic
ST scheme based on the transmission history. If the previ-
ous ST has been reached, followed by a rate increment, we
conclude that the channel quality is improving. Since the
data rate is already higher now, we increase ST to stay in
the current high rate as long as possible. If a transmission
failure immediately follows the rate increment, we also in-
crease ST to discourage premature rate increments. For the
Failure Threshold (FT), a high value may degrade the sys-
tem performance, since too many transmissions failed be-
fore the data rate is reduced. On the contrary, it is very likely
that a single failure is due to fast fading, which should be
handled by the multirate retry strategy, while bursty failures
are due to stable deterioration in channel quality. Therefore,
ARC requires that once 2 consecutive packets are retrans-
mitted, the data rate is reduced as well as ST, to encourage
potential rate increments. Specifically, the ST value is ad-
justed in the interval of [STmin, STmax], using a similar
way as the one of TCP’s AIMD congestion window adjust-
ment. Algorithm 1 illustrates the ideas presented above.

3.3. Weighted fair scheduling: optimization model

Our focus in this section is on systems where packets
destined for each downlink user are queued at the AP and all
flows have infinite backlogs of bits. The task of the sched-
uler at the AP is to schedule a packet transmission to one
of the most profitable users, in the hope that such a trans-
mission maximizes the system performance. One greedy

Algorithm 1 Adaptive Rate Control
1: ARC with Multi-rate Retransmission and AIMD ST Adjustment.
2: while receiving a packet P dequed from one of the FIFO queues do
3: NextHop = daddr(p);
4: P.dataRate = NextHop.dataRate;
5: send(P);
6: if recvACK() then
7: if retry == 0 then
8: Success + +; Failure = 0;
9: if Success ≥ ST then

10: NextHop.dataRate + +;
11: ST+ = α; Recovery = 1;
12: end if
13: else if retry > 0 then
14: Success = 0; Failure + +;
15: oldRate = NextHop.dataRate;
16: if Failure ≥ FT then
17: NextHop.dataRate −−;
18: end if
19: if Recovery == 1 then
20: ST+ = α;
21: else if oldRate < NextHop.dataRate then
22: ST/ = β;
23: end if
24: Recovery = 0;
25: end if
26: end if
27: if ACKtimeout() then
28: P.dataRate −−;
29: if retry < retryLimit then
30: retry + +; retransmit(P);
31: else
32: Failure + +; Success = 0;
33: Recovery = 0; drop(P);
34: end if
35: end if
36: end while

scheduling policy is to always choose the user with the best
channel quality. However, in the case where one user al-
ways has a good channel, other users will suffer from star-
vation. Therefore, we need to consider a general tradeoff
model which maximizes an utilization function subject to
the assigned fairness constraint.

3.3.1. Packet scheduler. Following the framework de-
scribed in section 3, we present our packet scheduler
formulation. Without loss of generality, the aggre-
gate goodput (application layer throughput) is used as
the system performance metric. Consider N users in to-
tal (not including the AP) in the system. Each one op-
erates on the same PHY layer with the same rate set
R = {R1, R2, ... RM}. The objective of the scheduler is
to choose one useri out of N at the beginning of the kth

CP, based on the output �r(k) = [r1(k), r2(k), ... , rN (k)],
of the rate controller, where ri(k) ∈ R is the cur-
rent data rate of useri. The scheduler output �p(k) (defined
in (4)) states that if useri is scheduled, pi(k) = 1; other-
wise, pi(k) = 0. Since only one user is scheduled in one
CP, it follows that

∑N
i=1 pi(k) = 1. The expected good-

put of the scheduled useri in the kth CP is gi(k). Note
that gi(k) = g(ri(k), si(k), xi(k)), where si(k), xi(k)
are the packet length and channel condition respec-

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

tively, at the useri during the kth CP. However, as we
do not have the exact knowledge of xi(k), we can only
compute the goodput using (1) approximately. Follow-
ing this, the goodput in the current CP can be represented
as G(k) =

∑N
i=1 pi(k)gi(k). In the long run, the sys-

tem goodput is given by:

G = E[G(k)] = E[
N∑

i=1

pi(k)gi(k)].

Alternatively, let Gi = E[pi(k)gi(k)] be the long term
goodput of useri. The system goodput can be rewritten as:

G =
N∑

i=1

E[pi(k)gi(k)] =
N∑

i=1

Gi.

The optimization model is to maximize the system goodput,
given the assigned weight vector �w, i.e.,

max G =
N∑

i=1

Gi, s.t. (5)

Gi

wi
=

Gj

wj
, ∀1 ≤ i, j ≤ N. (6)

Using a similar technique as the one in [11], (5) and (6)
can be transformed to the following equivalent problem:

max Z =
Gi

wi
, (1 ≤ i ≤ N). (7)

Since all (Gi

wi
)′s are identical, once again, the objective

function in (7) is equivalent to:

max Y = (
N∑

i=1

ciwi)Z, where

ci ≥ 0, Z =
Gi

wi
, (1 ≤ i ≤ N).

It follows that the above problem can be rewritten as:

max Y =
N∑

i=1

ciGi, s.t. (8)

Gi

wi
=

Gj

wj
, ∀1 ≤ i, j ≤ N. (9)

Therefore, the original problem defined in (5) and (6) is
equivalently transformed to the optimization problem de-
fined in (8) and (9), where �c is a vector with non-negative
values. Suppose we are able to choose an appropriate con-
trol vector �c∗, such that it can drive (Gi)′s to satisfy (9),
then we only need to consider the optimization model

max Y =
N∑

i=1

c∗i Gi. (10)

Based on the above analysis, define the scheduling policy at
the LLC layer of the AP to be:

S∗(�G(k)) = arg max
i

c∗i Gi(k), (11)

such that in each CP, the weighted goodput is maximized.
Obviously, the policy S∗(�G(k)) yields a solution to the
problem defined in (10).

3.3.2. Weight adjustor. Note that we introduce the con-
trol vector �c∗, which is dependent on the distribution of �G,
to approach the fairness constraint. However, since the full
knowledge of channel conditions is not known prior, a fixed
�c∗ obtained at the very beginning and leading to the opti-
mal value is not available. Rather, we define an online up-
dating process to dynamically adjust the control vector �c∗,
which is the task of the weight adjustor introduced here. In
a special case where c∗i is always 1 for all i′s, the schedul-
ing policy reduces to the greedy one mentioned previously,
i.e., the one that always schedules the user with the largest
goodput in the current CP computed by (1).

The weight adjustor estimates the control vector using
a standard stochastic approximation algorithm [10][11], in-
troduced by Robbins and Monro for finding the solution to
the equation f(x∗) = 0 when f is observed with error yk =
f(xk) + ξk, where {ξk} is a sequence of random errors. In
this paper we assume {ξk} are independent with mean zero
and bounded variances. The idea of the Robbins-Monro al-
gorithm is to iterate the sequence xk+1 = xk − akyk until
convergence [9] [17]. In our case, define

fi(�c) =
Gi∑N
i=1 Gi

− wi∑N
i=1 wi

, i = 1, ..., N.

We use the stochastic approximation to generate a sequence
of iterations �c1, �c2, ..., that converges to �c∗. In each itera-
tion, the scheduling policy is given by:

Sk(�G(k)) = arg max
i

ck
i Gi(k).

Hence, we need an estimation of yk at f(�ck). Note that in
each CP, we have a noise observation of fi(�ck), i.e.,

yk
i = pi(k) − wi∑N

i=1 wi

, i = 1, ..., N,

where pi(k) is defined in (4). The observation error is:

E[ξk
i] = E[pi(k) − Gi∑N

i=1 Gi

] = 0.

Therefore, we can use the stochastic approximation algo-
rithm to adaptively find �c∗ by

ck+1
i = ck

i − akyk
i ,

where the step size ak should be appropriately chosen to
converge to zero, e.g., ak = 1/k. Algorithm 2 shows the
structure of WFS.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Algorithm 2 Weighted Fair Scheduling

1: Weighted Fair Scheduling: Gi
wi

=
Gj

wj
, ∀1 ≤ i, j ≤ N .

2: while receiving a packet P from the upper layer do
3: Enque(P);
4: if not blocked then
5: return P = Dequeue();
6: end if
7: end while

1: void Enque(P):
2: qid = findEnqueID(P.daddr());
3: flowQueue[qid].enque(P);

1: Packet* Dequeue():
2: if has not dequed any packet then
3: initwi();
4: else
5: updatewi() using stochastic approximation;
6: end if
7: for all NextHopi do
8: Gi = compute EGi(ri, si) by (1);
9: WeightedG[i] = ciGi;

10: end for
11: qid = selectBest(WeightedG[]);
12: return flowQueue[qid].deque();

Table 1. MAC/PHY and control parameters
[CWmin, CWmax] [15, 1023]

SlotTime, SIFSTime 9µs, 16µs

BasicRate 6Mbps

PHY overhead 20µs

ARC (STmin, STmax, FT) (8, 50, 2)

ARC (α, β) (16,2)

4. Performance evaluation

In this section, we present the performance evaluation of
the proposed WFS-ARC framework in ns2 [12]. Table 1
summarizes some parameters used in the simulation. For
more realistic consideration, we make necessary changes
to the original ns2 MAC/PHY layers and incorporate the
Ricean Fading channel model introduced in [14]. Saturated
CBR traffic is used. We run each simulation for at least 100
seconds with data payload size of 1000 Bytes.

4.1. ARC performance

Here we consider the single receiver case and evaluate
the performance ARC. In the first case, suppose the only
static user is far away from the AP. Without rate adaptation,
the AP always sends packets at a specified data rate, which
may either cause lots of transmission errors or a waste of
bandwidth due to a too low rate. In our scenario, the opti-
mal rate is 18 Mbps (Figure 2). With ARC, the AP can tune
to the best data rate (Figure 3). Now suppose the single user

is moving towards the AP. The channel condition is improv-
ing and the packet error rate at 18 Mbps is lower than in the
previous case. Without ARC, the maximum goodput is ap-
proximately 12.8 Mbps (Figure 4). On the other hand, ARC
can quickly tune to the improving channel quality and reach
the maximum 54 Mbps (Figure 5).

Figure 2. 802.11a/18: single static user

Figure 3. 802.11a/ARC: single static user

4.2. WFS-ARC performance

Here we study the performance of 802.11/ARC and
802.11/WFS-ARC. We first give a simple two-user sce-
nario, where user1 is close to the AP and user2 is far away

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Figure 4. 802.11a/18: single moving user

Figure 5. 802.11a/ARC: single moving user

from it. The AP starts the flow of user1 first and later of
user2. With ARC, though the AP can always transmit to
user1 at 54 Mbps and can only send at 18 Mbps to user2,
the goodput of the two users are approximately the same
(Figure 6). This can be explained by the fact that the two
users have roughly the same opportunity to access the chan-
nel, but the slower user consumes more radio time and leads
to very low channel utilization. This phenomenon is more
evident in another two-user case, where user2 is moving
towards the AP. The goodput of the two users are still ap-
proximately the same throughout the time (Figure 7). How-
ever, both are increasing since the channel quality of user2

is now improving and the time fraction it takes up is less
compared to the previous case. In Figure 8, the weights
for user1 and user2 in previous two-static-user case (Fig-

Figure 6. 802.11a/ARC: two static users

Figure 7. 802.11a/ARC: two moving users

ure 6) are set to be 2.4 and 1 respectively, taking account
of different channel qualities. We can see that our frame-
work converges quickly to the assigned weights and the sys-
tem goodput is improved by 50% while not sacrificing fair-
ness too much. The improvement is even more if we set
the weights to be 5 and 1 for user1 and user2 (Figure 9).
Both results reflect the well-known throughput and fairness
tradeoff: the higher the system throughput is, the lower the
fairness is. Figure 10 plots the aggregate goodput of both
schemes as a function of the number of users, assuming
saturated downlink CBR traffic. For 802.11/ARC, the sys-
tem performance is greatly dependent on the behavior of
the “worst user”. For 802.11/WFS-ARC, with properly as-
signed weights (e.g., the weights satisfying the QoS require-
ment), significant system goodput gain can be achieved.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Figure 8. 802.11a/WFS-ARC (2.4:1)

Figure 9. 802.11a/WFS-ARC (5:1)

5. Conclusions

In this paper, we propose a cross layer design, WFS-
ARC, for joint rate control and packet scheduling, so that
the LLC/MAC layers can exploit the multirate PHY layer
capability and the multiuser diversity. The problem is mod-
eled to maximize the system goodput with a rate adap-
tive MAC layer, while satisfying the assigned fairness con-
straint. We study the saturation behavior in different cases
and the simulation results demonstrate that through well-
designed cooperation of different layers, superior perfor-
mance gain can be achieved. This scheme can be easily
adopted by the sate-of-the-art IEEE 802.11 AP products,
since it can be implemented in the device driver and no
modification to the hardware is required. It should also be
easy to extend this to Ad Hoc networks.

References

[1] ICC Panel on Defining Cross-layer Design in Wireless Net-
working, May 2003.

[2] R. A. Berry and E. M. Yeh. Cross-Layer Wireless Resource
Allocation. IEEE Trans. Signal Processing, 21:59–68, Sept.
2004.

[3] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. Tripathi.
Enhancing Throughput over Wireless LANs using Channel
State Dependent Packet Scheduling. In Proc. IEEE INFO-
COM’96, pages 1133–1140, San Franciso, CA, Mar. 1996.

[4] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC
Protocol for Multi-Hop Wireless Networks. In Proc. ACM
MOBICOM’01, pages 236–251, Rome, Italy, July 2001.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

number of downlink users

ag
gr

eg
at

e
go

od
pu

t (
M

bp
s)

802.11a/ARC
802.11a/WFS−ARC

Figure 10. Aggregate goodput of multiple
users: 802.11a/ARC vs. 802.11a/WFS-ARC

[5] IEEE Std 802.11-1999. Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifica-
tions, Aug. 1999.

[6] IEEE Std 802.11a-1999. Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifica-
tions: High-speed Physical Layer in the 5 GHz Band, Sept.
1999.

[7] L. B. Jiang and S. C. Liew. An Adaptive Round Robin
Scheduler for Head-of-Line-Blocking problem in Wireless
LANs. The Chinese University of Hong Kong.

[8] V. Kawadia and P. Kumar. A Cautionary Perspective on
Cross-Layer Design. IEEE Trans. Wireless Commun., pages
3–11, Feb. 2005.

[9] H. Kushner and G. Yin. Stochastic Approximation Algo-
rithms and Applications. Springer-Verlag, New York, 1997.

[10] X. Liu, E. Chong, and N. Shroff. Transmission Schedul-
ing for Efficient Wireless Utilization. In Proc. IEEE INFO-
COM’01, pages 776–785, Anchorage, Alaska, Apr. 2001.

[11] Y. Liu and E. Knightly. Opportunistic Fair Scheduling over
Multiple Wireless Channels. In Proc. IEEE INFOCOM’03,
pages 1106–1115, San Franciso, CA, Mar. 2003.

[12] NS2. The Network Simulator2, 2003.
[13] D. Pong and T. Moors. Fairness and Capacity Trade-off in

IEEE 802.11 WLANs. In Proc. IEEE LCN’04, pages 310–
317, Tampa, Florida, Nov. 2004.

[14] Ricean Fading. Additions to the NS network simulator to
handle Ricean and Rayleigh fading, 2000.

[15] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly.
OAR: An Opportunistic Auto-Rate Media Access Protocol
for Ad Hoc Networks. In Proc. ACM MOBICOM’02, At-
lanta, GA, Sept. 2002.

[16] A. van der Vegt. Auto Rate Fallback Algorithm for the
IEEE 802.11a Standard. Technical report, Utrecht Univer-
sity, 2002.

[17] I. J. Wang, E. K. P. Chong, and S. R. Kulkarni. Weighted Av-
eraging and Stochastic Approximation. Math. Control Sig-
nals Systems, 1(10):41–60, 1997.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

